skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lehrback, Juha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study Besov capacities in a compact Ahlfors regular metric measure space by means of hyperbolic fillings of the space.This approach is applicable even if the space does not support any Poincar´e inequalities. As an application of the Besov capacity estimates we show that if a homeomorphism between two Ahlfors regular metric mea- sure spaces preserves, under some additional assumptions, certain Besov classes, then the homeomorphism is necessarily a quasisymmetric map. 
    more » « less